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Abstract: Dependability of robot co-workers plays an important role in increasing the
effectiveness of human-robot interaction in manufacturing. Our goal is to understand the role
of motion planning parameters in human-robot collaboration and to provide guidelines for the
selection of the most suitable motion planner. The human factors analysis provided in this
paper highlights that repeatability of the motion and predictability of the robot timing affect
the quality of human-robot collaboration.
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1. INTRODUCTION

Human factors in industrial robotic applications and their
consequences on the work organization have been studied
in academic and industrial research for decades. Pioneering
studies were proposed in the eighties (Panny, 1983; Naga-
machi, 1986). In recent years, efforts were made to improve
human-robot interaction in the increasingly widespread
collaborative cells (Oliff et al., 2018; Bolmsjö, 2015). Many
researchers addressed the implications of human factors on
safety aspects in industrial scenarios (Aaltonen et al., 2018;
Behrens et al., 2015; Robla-Gomez et al., 2017; Freedy
et al., 2007), and their deployment (Saenz et al., 2018). A
roadmap for the successful implementation of human fac-
tors in industrial human-robot collaboration is proposed
in (Charalambous et al., 2015). (Hoffman, 2019) proposed
metrics to evaluate fluency in human–robot collaborative
scenarios, measuring the effectiveness of the human and
the robot to work as a team.

A few studies pointed out the influence of motion plan-
ning on human acceptance, trust, and performance. In
(Koppenborg et al., 2017), a virtual reality experimental
campaign has been performed to understand how the robot
movements impact the human perception. The results in-
dicate that higher movement speed and lower predictabil-
ity leads to higher risk perception, anxiety, workload, and
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a tendency toward lower task performance. In (Lasota
and Shah, 2015), human-aware motion planners – namely
motion planners that compute the path considering the
knowledge of the next human task – show their effective-
ness in enhancing the collaboration, reducing idle times
and increasing the user’s satisfaction.

These aspects are even more important in unstructured
scenarios, where it is not possible to use pre-computed
trajectories but the motion planner has to plan the move-
ment on the fly. Consider for example, a collaborative
scenario where the human and the robot have to pick
some components from a table to assemble them and the
position of the pieces is not known a priori. The robot
will estimate the position of the piece just before picking
it (for example, by means of a vision system) and will
compute a trajectory to reach the grasping point on the
fly. Similarly, the robot will compute also the trajectory
to assemble the piece online. Robotic applications where
online motion planning is strictly necessary are more and
more widespread, especially in view of the intrinsic dy-
namic nature of human workers and the advances in AI
reasoning that allows the robot to cope with less and less
structured environments (Karpas and Magazzeni, 2020).

In these applications, the motion planning module is key.
Given a start and a goal point, the motion planning
problem consists in finding a collision-free trajectory that
connects the two points. The problem admits an infinite
number of solutions: there are usually infinite paths that
connect the two points in the space and every path can
be traveled with an infinite number of velocity profiles.



Motion planning is one of the fundamental problems in
robotics and a huge variety of methods have been pro-
posed during the years. Roughly speaking, the motion
planning problem can be approached through determin-
istic or stochastic algorithms. Under the same conditions,
deterministic algorithms always find the same solution; on
the contrary, stochastic planners are not repeatable. Even
though stochastic planners are less predictable than de-
terministic ones, their effectiveness in solving the planning
problem in presence of complex cells makes them the de-
facto standard in unstructured scenarios (LaValle, 2006;
Adiyatov and Varol, 2017).

To the best authors’ knowledge, there is no literature
providing guidelines to select and tune motion planners
to cope with human factors, concerning aspects like kine-
matics limits and path repeatability. The motion planner
should be chosen also keeping in mind questions like: “is
the human more bothered by spatial variability or tempo-
ral variability of the trajectories?”; “is the human bothered
by acceleration changes and/or velocity changes?”,“is the
synchronization of the movements of human and robot
important?”.

This paper is a first attempt to investigate the impact
of motion planning parameters on human perception,
intending to help in the choice of the most suitable
planner and to boost further research in human-centered
motion planning. To this purpose, two experiments are
carried out and evaluated by means of questionnaires and
objective data (namely, variation of the human’s cycle time
and centroid motion due to the robot presence). Results
show that motion readability strongly affects the human
trust in the robot co-worker. On the contrary, differences
in the velocity profile (e.g. higher or lower speed and
acceleration) do not seem to bother the user as long as
the robot timing is predictable. In non-cooperative tasks,
it turned out that the robot cycle time influences the user
behavior, as the human worker is apt to keep pace with the
robot. In cooperative tasks, the human worker (especially
if familiar with robots) tends to overestimate the distance
from the robot, and this may pose safety hazards if the
robot safety controller does not react promptly.

The paper is organized as follows: Section 2 describes
the setup used in the experimental campaign. The first
experiment on the execution of unsynchronized tasks in
the same workspace is discussed in Section 3.1. Section
3.2 describes a scenario where the human and the robot
tasks need to be synchronized. Discussion on the results
and their influence on the selection and tuning of motion
planning are highlighted in Section 4

2. MATERIALS AND METHODS

The hardware and software platform used for the ex-
periments are described in Subsection 2.1. Two different
experiments were designed to analyze different levels of
collaboration. In the first experiment, the robot and the
human execute independent tasks in the same area, while
in the second experiment their tasks have casual rela-
tions and require synchronization. The experiments are
described in Subsection 2.2. The evaluation procedure is
given in Subsection 2.3. The tests involved 32 participants:

Fig. 1. Re-manufacturing pilot plant with the collaborative
robot and the human-tracking system.

28 males and 4 females; age: 28.3±8.6 years; 24 were
familiar with robots (>6 months of training), 8 were not.

2.1 Hardware and software

The human-factors campaign was carried out through the
re-manufacturing pilot plant installed at CNR-STIIMA
(Brusaferri et al., 2019). The experimental hardware,
shown in Figure 1, is composed of:

• A collaborative robot, Universal Robots UR10 version
3.5, controlled via Robotic Operating System (ROS)
(Quigley et al., 2009);

• A two-finger gripper, model Robotiq 2-Finger 85mm,
controlled via ROS;

• A time-of-flight camera, model Swiss Ranger 4000,
that publishes a point cloud on a ROS topic. The
point-cloud generated by the camera was filtered by
using the PCL (point cloud library) in order to find
the centroid of the human.

2.2 Description of experiments

Experiment 1: unsynchronized tasks

The goals of the first test are: understanding the influence
of path changes on human behavior in workspace shar-
ing applications; understanding the influence of velocity
and acceleration changes on human behavior in workspace
sharing applications; understanding if the human synchro-
nizes her/his pace with the robot one.

In the experiment, the user was asked to unscrew some
screws from a metallic item. The used had to place



Fig. 2. Experiment 1 layout. The blue circle is the disas-
sembly station; red circle is the screw buffer

the screw in a buffer immediately after the unscrewing
operation. Figure 2 shows the working area. The path
between the disassembly area and the screw buffer are
inside the robot workspace but it does not intersect any
robot trajectories.

The human was asked to perform the task twice. One
without any robot movements, which is considered as the
baseline, and one with the robot execute pick-and-place
tasks. The order of the two experiments has been chosen
randomly to avoid polarization.

When the robot was moving, it executed a pick-and-place
task twelve times; three of them present differences with
respect to the other ones. These variations are randomly
selected among the following types:

• M-A: the operator unscrews the first piece without
robot movements, and then it repeats the disassembly
with the robot will change path without changes on
the limits on velocity and acceleration;

• A-M: as M-A but the first disassembly is performed
when the robot is moving, while the robot is stopped
in the second one;

• M-B: the operator unscrews the first piece without
robot movements, and then it repeats the disassembly
with the robot will change on the limits on velocity
and acceleration without changing the path;

• B-M: as M-B but the first disassembly is performed
when the robot is moving, while the robot is stopped
in the second one.

Experiment 2: synchronized tasks

The second experiment deals with a task that requires
a synchronization between robot and human tasks. The
goals are: understanding how the operator is influenced
by changes on speed, acceleration, and execution time;
understanding how the operator perceives the human-
robot cooperation when he/she has to synchronize his/her
activities with the robot.

The user is asked to bring to the robot a cylinder and
10 screws. The tape and the screws are located on the
worktable, therefore the human has to pick one or more
of them and walk to the robot, as shown in Figure 3.

Fig. 3. Experiment 2 setup. Blue circle: worktable. Red
circle: Picking area

The robot performs a picking movement and closes the
gripper finger to grasp the object, then it will place the
object in the buffer. These movements can be triggered
by the human position (Cases A, B, and C) or by time
(Case D). The human is asked to bring the screws to the
robot to place them all inside the cylinder; the user is
informed that the number of screws inside the circle will
be the evaluation score of his/her experiment. However,
this task is introduced only to focus the user’s attention
on a practical task instead of the robot movement. There
are four different variants of the experiments:

• A: the first five pick-and-place operations have high
acceleration and low velocity; the last five have low
acceleration and high velocity. The pick-and-place
time is the same in all 10 operations. Each operation
starts only if the human is entering the picking area.

• B: the first five pick-and-place operations have low
acceleration and high velocity; the last five have
high acceleration and low velocity. The pick-and-place
time is the same in all 10 operations. Each operation
starts only if the human is entering the picking area.

• C: the first five pick-and-place operations have high
acceleration and low velocity; the last five have low
acceleration and low velocity. The pick-and-place
time is higher during the first five operations. Each
operation starts only if the human is entering the
picking area.

• D: the first five pick-and-place operations have high
acceleration and low velocity; the last five have low ac-
celeration and high velocity. The pick-and-place time
is equal in all 10 operations. The last seven operations
start without considering operator position.

2.3 Evaluation procedure

The human factor evaluation is based on objective and
subjective measures. Subjective measures come from a
questionnaire that each subject had to answer after the
experiment. The questionnaires aim to understand what
are the motion parameter that affect the human reaction
the most. In particular, the questionnaire of Experiment 1
investigates the level of danger and interference perceived
by the subject when working with the robot. The question-
naire of Experiment 2 investigates whether the subjects



Table 1. Questionnaire of Experiment 1

Q1: Did the robot perform movements that you felt dangerous?
Yes. No.

Q2: Has the robot hindered your activities?
Yes. No.

Q3: Was the robot far from you?
Yes. No.

Table 2. Questionnaire results for the first
Experiment.

Q1: Did the robot perform movements that you felt dangerous?
yes no

A-M, M-A 15% 85%
B-M, M-B 15% 85%

Q2: Has the robot hindered your activities?
yes no

A-M, M-A 37.5% 62.5%
B-M, M-B 18.8% 81.2%

Q3:Was the robot far from you?
yes no

A-M, M-A 18.2% 81.2%
B-M, M-B 6.2% 93.8%

noticed changes in the motion planning configuration and
which configuration they felt more comfortable with. Ob-
jective measures only regarded Experiment 1. In particu-
lar, the required time for disassembling was measured, and
the trajectory of subject’s centroid was recorded. Based on
these data, we were able to evaluate variations of the cycle
time and of the human motion due to the different motion
planning configurations as follows:

• Cycle time: the ratio between the time required to
complete the experiment with and without the robot
was computed; this should verify whether the human
productivity is affected by the robot movement also
during unsynchronized tasks.

• Human motion: the distance between the human and
the robot was computed; this should verify whether
the human motion is affected by the robot movement
also during unsynchronized tasks.

3. RESULTS

3.1 Experiment 1 : unsynchronized tasks

The questionnaire provided to the subjects is shown in
Table 1. Results are summarized in Table 2 and discussed
hereafter.

Q1: Did Robot perform movements that you feel danger-
ous? The user declares if the robot performs dangerous
movements. 19% of users answer Yes, it is important to
remark the presence of a strong correlation between the
user’s experience level and the danger perception. No one
with more than 6-month experience with robot consid-
ers the robot movements dangerous. Another important
consideration is the absence of correlation between the
experiment type (i.e., variations on path or kinematic
constraints) and the danger perception.

Q2: Has the robot hindered your activities? The user
declares if the robot hinders the user activities. 71.8%

Fig. 4. Ratio between the time required to complete the
experiment with and without the robot.

of the answers were negative. In this case, there is a
significant correlation with the experiment type. Path
changing hinders the user activities more than twice the
velocity/acceleration changes.

Q3: Was the robot far from you? The user declares
if the robot was far or close in his/her opinion. As
in Question Q1, the user experience is more important
than the experiment type, even if in M-A and A-M
experiments the robot is considered a little more closed. It
is important to notice that the minimum distance during
the experiments between the robot gripper and the user
was around 40 cm, thus it is possible to assert that the
human overestimate robot distance during tasks.

As regards objective measures, variations of the cycle
time and of the human motion were analyzed. The ratio
between the time required to complete the experiment
with and without the robot is shown in Figure 4. As
expected, the disassembly time is slower during the second
disassembly due to the gained experience. However, it is
worth stressing that in M-A and A-M the ratio is inversely
proportional to the sequence, while in M-B and B-M the
human is slower than in M-A and A-M. Considering that
the robot is moving slower in experiments M-B and B-M
with respect to M-A and A-M cases, it is reasonable to
assert a correlation between the robot and the operator
throughput also in tasks that do not require synchroniza-
tion. Regarding influences on the human motion, no signifi-
cant changes have been highlighted in both the experiment
types. This aspect is consistent with the overestimation of
the relative distance (Q3) and the absence of overlapping
between human and robot paths.

Summary Experimental results highlight the path chang-
ing influences more the operator’s attention with respect
to speed/acceleration changes. However, human does not
change significantly his/her path based on robot behav-
ior. Conversely, Human throughput is influenced by robot
throughput. Humans overestimate robot distances, espe-
cially during predictable movements. Human’s path is not
strongly influenced by the robot movements if the robot
path does not intercept operator’s trajectory.



Table 3. Questionnaire of Experiment 2

Q1: Did the robot change speed during the test?
Yes. No.

Q2: If it changed speed, which case did you prefer?
lower acceleration, higher velocity.

higher acceleration, lower velocity.
Q3: Did you feel like the robot was cooperating with you?

Yes. No.

Table 4. Questionnaire results for the second
experiment.

Q1: Did the robot change speed during the test?
yes no

Type A 25% 75%
Type B 21.8% 78.2%
Type C 81.2% 18.8%
Type D 28.1% 71.9%

Q2: If it changed velocity, which did you prefer?
lower acc., higher speed higher acc., lower speed

Type A 100% 0%
Type B 100% 0%
Type C 85% 15%
Type D 100% 0%

Q3: Did you feel like the robot was cooperating with you?
yes no

Type A 100% 0%
Type B 100% 0%
Type C 43.7% 56.3%
Type D 100% 0%

3.2 Experiment 2 - synchronized tasks

The questionnaire provided to the subjects is shown in
Table 3. Results are summarized in Table 4 and discussed
hereafter.

Q1: Did the robot change speed during the test? The
question allows understanding if the user perceives the
speed/acceleration changes during the experiments. In
experiments A, B, and D, 75% of the users did not rec-
ognize speed/acceleration changes. In these experiments,
the execution time is constant while limits on acceleration
and velocity are changed. In experiment C, all the users
perceive the speed change.

Q2: If it changed velocity, which case did you prefer?
In experiment C, all the users identify that the robot
velocity was slow down during the experiment. In ex-
periments A, B, and D, the users were able to de-
tect the speed/acceleration changes preferred the low-
acceleration/high-velocity trajectories.

Q3: Did you feel like the robot was cooperating with you?
This question allows understanding if the operator thinks
to cooperate with the robot even if he/she is not dictating
the pace. In experiments A, B, and C the robot starts
the pick-and-place movement only if the operator is in
the picking area. Thus, the operator can decide his/her
velocity during the movements from/to the working table.
Almost all the users (91%) consider the robot to be
cooperating. In experiment D, the last 7 pick-and-place
movements respect a fixed time schedule therefore the
operator has to accommodate his/her velocity to the robot

velocity. The majority of the user (75%) consider the robot
to be non-cooperating.

Summary Considering operator feelings, trajectory time
is more important than speed and accelerations. Different
motion profiles with the same total time are difficult to
recognize when the operator focuses his/her attention on
the task. Humans consider the robot more collaborative
when they can decide the cooperation activity timing.

4. DISCUSSION

Experiments show that it is very important to compute
motion paths that are predictable by the workers, more-
over also the execution time should be predictable as
much as possible. This aspect is very important in the
selection of the motion planner. As a matter of fact, non-
optimal stochastic motion planners, like RRT (LaValle,
1998; Kuffner and La Valle, 2000), are very effective in
finding a solution in a limited amount of time, but they
are characterized by a large variability of the solution path.
(Jaillet et al., 2010; Devaurs et al., 2013) proposed an im-
provements on the basic RRT algorithm using transition-
based sampling. The algorithm improves the solution qual-
ity with respect to basic RRT implementation, leading to
more repeatable paths and execution times.

Optimal motion planners should provide a unique solution
to the planning problem as shown in (Luo and Hauser,
2014) using a simple benchmark, but they still own a
certain level of variability due to limited computational
time dictated by the application. To overcome this limi-
tation, informed sampling techniques have been proposed
to speed-up the solver (Gammell et al., 2014; Choudhury
et al., 2016).

Considering the experimental results, optimal motion
planners with limited computational time should be pre-
ferred in human-robot interaction, due their ability to
compute repeatable and predictable solutions. If compu-
tational time does not fulfill the application requirements,
improved RRT algorithms able to improve solution quality
has to be preferred.

When focused on his/her activities, the user seems to be
unable to distinguish different velocity profiles (namely,
different limits of velocity and acceleration) if the total
cycle time is the same. From the human point of view, it
is important to execute the movement in a predictable
amount of time allowing the human to synchronize its
activity. The choice of the velocity profile is therefore less
crucial in terms of motion dependability, as long as the
cycle time is predictable by the user.

It is also worth stressing that the robot throughput re-
sulted to influence the human behavior also without any
need for synchronization of the task.

In cooperative tasks, operators prefer to decide the task
timing and, when focused on his/her activities, the opera-
tor overestimates the distance of the robot. These consid-
erations imply that the motion planner has to take care
of maintaining the appropriate distance to avoid the need
for a significant slowdown of the robot velocity during the
path.
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